Isl1 Directly Controls a Cholinergic Neuronal Identity in the Developing Forebrain and Spinal Cord by Forming Cell Type-Specific Complexes

نویسندگان

  • Hyong-Ho Cho
  • Francesca Cargnin
  • Yujin Kim
  • Bora Lee
  • Ryuk-Jun Kwon
  • Heejin Nam
  • Rongkun Shen
  • Anthony P. Barnes
  • Jae W. Lee
  • Seunghee Lee
  • Soo-Kyung Lee
چکیده

The establishment of correct neurotransmitter characteristics is an essential step of neuronal fate specification in CNS development. However, very little is known about how a battery of genes involved in the determination of a specific type of chemical-driven neurotransmission is coordinately regulated during vertebrate development. Here, we investigated the gene regulatory networks that specify the cholinergic neuronal fates in the spinal cord and forebrain, specifically, spinal motor neurons (MNs) and forebrain cholinergic neurons (FCNs). Conditional inactivation of Isl1, a LIM homeodomain factor expressed in both differentiating MNs and FCNs, led to a drastic loss of cholinergic neurons in the developing spinal cord and forebrain. We found that Isl1 forms two related, but distinct types of complexes, the Isl1-Lhx3-hexamer in MNs and the Isl1-Lhx8-hexamer in FCNs. Interestingly, our genome-wide ChIP-seq analysis revealed that the Isl1-Lhx3-hexamer binds to a suite of cholinergic pathway genes encoding the core constituents of the cholinergic neurotransmission system, such as acetylcholine synthesizing enzymes and transporters. Consistently, the Isl1-Lhx3-hexamer directly coordinated upregulation of cholinergic pathways genes in embryonic spinal cord. Similarly, in the developing forebrain, the Isl1-Lhx8-hexamer was recruited to the cholinergic gene battery and promoted cholinergic gene expression. Furthermore, the expression of the Isl1-Lhx8-complex enabled the acquisition of cholinergic fate in embryonic stem cell-derived neurons. Together, our studies show a shared molecular mechanism that determines the cholinergic neuronal fate in the spinal cord and forebrain, and uncover an important gene regulatory mechanism that directs a specific neurotransmitter identity in vertebrate CNS development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Concocting Cholinergy

The neuronal diversity in our brains is staggering. Understandably, uncovering the molecular rules that govern it is a very difficult pursuit. Its starting point should most certainly be a catalogue raisonné of this diversity, ordered perhaps according to the relatively few neurotransmitters employed in the nervous system. Historically, this has been achieved in descriptive studies; first using...

متن کامل

Repair of Spinal Cord Injury by Co-Transplantation of embryonic Stem Cell-Derived Motor Neuron and Olfactory Ensheathing Cell

Background: The failure of regeneration after spinal cord injury (SCI) has been attributed to axonal demyelination and neuronal death. Cellular replacement and white matter regeneration are both necessary for SCI repair. In this study, we evaluated the co-transplantation of olfactory ensheathing cells (OEC) and embryonic stem (ES) cell-derived motor neurons (ESMN) on contused SCI. Methods: OEC...

متن کامل

Transcription factor LIM homeobox 7 (Lhx7) maintains subtype identity of cholinergic interneurons in the mammalian striatum.

The generation and maintenance of a plethora of neuronal subtypes is essential for normal brain function. Nevertheless, little is known about the molecular mechanisms that maintain the defining characteristics of neurons following their initial postmitotic specification. Using conditional gene ablation in mice, we demonstrate here that the homeodomain protein LIM homeobox (Lhx)7 is essential fo...

متن کامل

A Postmitotic Role for Isl-Class LIM Homeodomain Proteins in the Assignment of Visceral Spinal Motor Neuron Identity

LIM homeobox genes have a prominent role in the regulation of neuronal subtype identity and distinguish motor neuron subclasses in the embryonic spinal cord. We have investigated the role of Isl-class LIM homeodomain proteins in motor neuron diversification using mouse genetic methods. All spinal motor neuron subtypes initially express both Isl1 and Isl2, but Isl2 is rapidly downregulated by vi...

متن کامل

گسترش اختصاصی مولکول فوکوز در ردیابی با لکتین Aleuria Aurantia در تکامل رشته‌های عصبی ناحیه نخاع لوله عصبی در طی دوران مورفوژنز موش

Background and Aim: Various investigations have shown that fucosylated glycoconjugates components of the cell surface and extracellular matrix play crucial roles in critical morphogenetic and histogenetic events along neuronal projections of immature neurons during embryonic development. In addition, fucosylated glycoconjugate within the axoplasm of the adult neurons is involved in fast transpo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2014